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Abstract
We investigate chaotic behaviour in a 2D Hamiltonian system—oscillators
with anharmonic coupling. We compare the classical system with the quantum
system. Via the quantum action, we construct Poincaré sections and compute
Lyapunov exponents for the quantum system. We find that the quantum
system is globally less chaotic than the classical system. We also observe
with increasing energy the distribution of Lyapunov exponents approaching a
Gaussian with a strong correlation between its mean value and energy.

PACS numbers: 03.65.−w, 05.45.Mt

1. Introduction

Quantum chaos, which denotes properties of quantum systems whose underlying classical
system is chaotic, has been experimentally observed in irregular energy spectra of nuclei,
of atoms perturbed by strong electromagnetic fields [1]. In a weak exterior magnetic field,
however, a hydrogen atom shows a level distribution being neither Poissonian nor Wignerian.
How can we then compare classical chaos with quantum chaos? Is the quantum system more
or less chaotic than the corresponding classical system? An understanding of how classically
regular and chaotic phase space is reflected in quantum systems is an open problem, since
semiclassical methods of quantization (EKB, Gutzwiller’s trace formula) are not amenable to
mixed dynamical systems [2]. In order to describe nearest neighbour energy level spacing
distributions for mixed systems, workers have used different approaches. Percival [3] has
suggested a distribution based on a division of phase space into regular and irregular regions.
Brody [4] has suggested a phenomenological fit between a Wigner and a Poisson distribution.
Izrailev [5] suggested a distribution based on the concept of quantum localization. Another
interpolation between ensembles has been proposed by Lenz and Haake [6]. The interpolating
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distribution proposed by Berry and Robnik [7] uses an interpolation parameter determined
from classical phase space.

In order to address the above questions, workers have suggested concepts to reintroduce
trajectories into quantum mechanics. One possibility is the use of the standard effective action,
which takes into account quantum corrections of the classical action. Cametti et al [8] have
considered the model of the 2D anharmonic oscillator and computed the effective action via
loop (h̄) expansion to low order. Another approach is Bohm’s interpretation of quantum
mechanics which expresses the Schrödinger equation in polar form. It allows us to introduce
the concept of a particle trajectory and hence a quantum equivalent phase space. This approach
has been used by Schwengelbeck and Faisal [9] to describe chaos in the kicked rotor and later
by other workers for the 2D anisotropic harmonic oscillators [10], the hydrogen atom in an
external electromagnetic field [11] and coupled anharmonic oscillators [12]. For the kicked
rotor in 1D, which is classically chaotic, it turns out that the quantum system is nonchaotic, i.e.
the quantum Kolmogorov–Sinai entropy goes to zero [9] (rediscovered in [12]). In contrast to
that, the 2D anisotropic harmonic oscillator, being classically non-chaotic, has been reported
to exhibit quantum chaos [10].

A comparison with respect to chaotic behaviour of the classical system and the quantum
system has been investigated also in field theoretical models. Casetti et al [13] considered
the large N limit of N-component φ4 oscillators in the presence of an external field. Using
mean field theory they observed a strong suppression of quantum chaos due to quantum
corrections moving the system away from a hyperbolic fixed point responsible for classical
chaos. Matinyan and Müller [14] considered the model of massless scalar electrodynamics,
which is classically chaotic. Using effective field theory and loop expansion, they noticed that
quantum corrections increase the threshold for chaos by modifying the ground state of the
system.

To address the above questions, we apply the concept of the quantum action, developed
in [15–20]. It expresses quantum transition amplitudes G(xfi, tfi; xin, tin) in terms of a local
action—the quantum action—S̃[x] defined by

G(�xfi, t = T ; �xin, t = 0) =
∑

trajectories

Z̃ exp[iS̃[�̃x traj]/h̄]

(1)

S̃[�x] =
∫ T

0
dt

1

2
m̃�̇x2 − Ṽ (�x(t)) �̃x traj : δS̃[�̃x traj] = 0.

Here S̃ is evaluated along its trajectory (stationary point of S̃) going from boundary point
(�xin, t = 0) to (�xfi, t = T ). There may be several such stationary points. The quantum
action has been explored numerically [15–17, 20] for confinement-type potentials (bound
state spectrum), e.g. the inverse square potential and polynomial potentials. The numerical
studies taking into account only one trajectory (of lowest action) show that the parameters of
the quantum action vary smoothly with transition time T, interpolating between the classical
action at T = 0 and some ‘deep’ quantum action in the asymptotic regime T → ∞. In the
limit of large imaginary transition time, the quantum action has been proved to exist, and
to give an exact parametrization of transition amplitudes [18]. Also in this limit analytical
relations exist between the classical potential, the quantum potential and wavefunctions [19].

What is the physical interpretation of the quantum action and its trajectories? In the
path integral representation of the transition amplitude occurs the classical action and all
kinds of paths (zig-zag curves). In the quantum action representation occurs the quantum
action but only some trajectories (differentiable curves). Thus we interpret the quantum
action as a renormalization effect on the classical action. Quantum fluctuations appear as
tuned parameters in the new action. This situation is similar to renormalization in solid state
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physics: a charged particle propagating in the solid interacts with atoms. This results in an
effective mass and charge, different from that of free propagation.

The local quantum action and its trajectories allow us to construct a quantum analogue
phase space. From that one can compute quantum Poincaré sections, Lyapunov exponents
or the Kolmogorov–Sinai entropy like in classical nonlinear dynamics. This gives a new
vista on quantum chaos. First results of a numerical study have been reported in [17]. The
quantum action has been found useful also to characterize quantum instantons [16]. The
definition of the quantum action looks conspicously similar to that of Bohm’s parametrization
of the wavefunction. So what is the difference and what is new here compared to previous
studies of quantum chaos based on Bohm’s approach? First, Bohm’s approach considers the
quantum system in a state given by a particular wavefunction. Hence the fluid dynamical
motion depends on such wavefunction (via Bohm’s quantum potential). The quantum action,
however, is the same for all initial and final states of the transition amplitude, and depends
only on transition time. Of course, the trajectories of the quantum action depend on initial and
final boundary conditions. Second, in Bohm’s approach, the mass of the particle occurring in
the fluid dynamics picture is the same as in the original Hamiltonian. In the quantum action,
the mass is renormalized and in general differs in value from the classical mass. Finally,
in contrast to Bohm’s approach, the quantum action is very close in functional form to the
classical action, and hence allows a direct and detailed comparison of phase space, as will be
shown below.

2. Existence and analytical form of quantum action in the limit of large imaginary time

The proof of the existence of the quantum action in the limit of large imaginary time for
Hamiltonian systems has been given for 1D in [18]. Because we consider in this work a
2D Hamiltonian system, and for sake of self-consistency we will outline the proof here for
arbitrary dimension (in particular D = 2, 3). Moreover, we present nonlinear differential
equations relating the classical potential to the quantum potential. Also the relation between
the quantum action and supersymmetric quantum mechanics will be discussed. Let us go over
to imaginary time t → −it . Then the transition amplitude becomes the Euclidean transition
amplitude

GE(�xfi, T ; �xin, 0) = 〈�xfi| e−HT/h̄|�xin〉 =
∫

[dx] exp

[
−1

h̄
SE[�x]

]∣∣∣∣
�xfi,T

�xin,o

(2)

the classical action becomes the Euclidean classical action

SE[�x] =
∫ T

0
dt

{
1

2
m�̇x2

+ V (�x)

}
(3)

and the quantum action becomes the Euclidean quantum action

S̃E[�x] =
∫ T

0
dt

{
1

2
m̃�̇x2

+ Ṽ (�x)

}
. (4)

Our goal is to prove for T → ∞ that the Euclidean transition amplitudes can be expressed in
terms of the Euclidean quantum action, using a single trajectory

GE(�xfi, T ; �xin, 0) = Z̃E exp

[
−1

h̄
�̃E

∣∣�xfi,T

�xin,0

]
(5)

�̃E|�xfi,T

�xin,0
= S̃E[�̃x traj]|�xfi,T

�xin,0
=

∫ T

0
dt

{
1

2
m̃

˙̃�x2

traj + Ṽ (�̃x traj)

}∣∣∣∣
�xfi

�xin

.



6254 L A Caron et al

2.1. Necessary and sufficient conditions for the existence of the quantum action

For simplicity of notation we drop the subscript Euclidean. Let us make some assumptions on
the potential V (�x): let V (�x) � 0. Let V (�x) be a smooth (sufficiently differentiable) function
of �x and let V (�x) → ∞ when |�x| → ∞. Moreover, let V (�x) have a single minimum. Also we
assume that the ground state is non-degenerate. Because the Euclidean transition amplitude is
given by a (Wiener) path integral with a positive Euclidean action, G(�y, T ; �x, 0) � 0 for all
�x, �y. Hence we can introduce a real function η such that

G(�y, T ; �x, 0) = G0 exp[−η(�y, �x)] (6)

where G0 is some constant (for fixed T) which takes care of the fact that G has a dimension
(1/LD).

Comparing the parametrization of G in terms of the function η, equation (6), with its
parametrization in terms of the quantum action, equation (5), this looks similar. In order to
prove it we need to establish that η(�y, �x) can be expressed in terms of a local action S̃ evaluated
along its trajectory �̃x traj, such that

η(�y, �x) = 1

h̄
S̃[�̃x traj]

∣∣∣∣
�y,t=T

�x,t=0

and G0 = Z̃. (7)

This is a necessary and sufficient condition for the existence of the quantum action. In order
to establish that those equations hold, we proceed in the following by establishing a number
of equations equivalent to equation (7). At the end, we show that the last of those conditions
can be satisfied.

First, we compute partial derivatives of η and �. Consider the functional derivative up
to first order of the action S̃ around the stationary point, admitting also variation of boundary
points, denoted by

�̃x(t) = �̃x traj(t) + �̃h(t) �̃x traj(t = 0) = �a �̃x traj(t = T ) = �b
(8)

�̃h(t = 0) = δ�a �̃h(t = T ) = δ�b.

We obtain

δS̃[�̃x] = �̃ptraj(T ) · δ�b − �̃ptraj(0) · δ�a + O(h̃2). (9)

On the other hand, one has

δη(�b, �a) = �∇�yη(�y, �a)|�y=�b · δ�b + �∇�xη(�b, �x)|�x=�a · δ�a. (10)

Comparing equations (9), (10) for terms linear in δ�a and δ�b, respectively, we find the following
necessary and sufficient conditions for the existence of the quantum action,{

− 1
h̄
�̃ptraj(0) = �∇�x 1

h̄
�̃|�y�x = �∇�xη(�y, �x)

1
h̄
�̃ptraj(T ) = �∇�y 1

h̄
�̃|�y�x = �∇�yη(�y, �x)

}
for all boundary points (�y, �x). (11)

Equation (11) is equivalent to

1

h̄
�̃|�y�x = η(�y, �x) modulo a global constant. (12)

The global constant can be absorbed into the constants G0 and Z̃, respectively, and hence
equation (11) is equivalent to equation (7).
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2.2. Use of energy conservation

It remains to be shown how condition (11) can be satisfied. We do this by employing the
principle of conservation of energy. The action given by equation (4) describes a conservative
system, i.e., the force is derived from a potential and energy is conserved. In imaginary time,
energy conservation reads

−T̃ kin + Ṽ = ε = const (13)

which implies

Ṽ (�b) − Ṽ (�a) = 1

2m̃

( �̃pfi
traj

)2 − 1

2m̃

( �̃pin
traj

)2
. (14)

Thus combining equations (11) and (14), we find another necessary and sufficient condition
for the existance of the quantum action: the quantum action exists and is local, if there is a
mass m̃ and a local potential Ṽ (�x), such that

2m̃

h̄2 [Ṽ (�b) − Ṽ (�a)] = ( �∇�yη(�y, �a)|�y=�b)
2 − ( �∇�xη(�b, �x)|�x=�a)2 holds for all �a, �b. (15)

2.3. Feynman–Kac limit

Finally, we want to show that equation (15) can be satisfied in the limit T → ∞. In this limit
holds the Feynman–Kac formula

G(�y, T ; �x, 0) −→
T →∞

〈�y|ψgr〉 e−EgrT/h̄〈ψgr|�x〉 (16)

where ψgr is the ground state wavefunction and Egr is the ground state energy. Here we use
the assumption that the ground state is not degenerate. Equation (6) implies

G0 e−η(�y,�x) −→
T →∞

〈�y|ψgr〉 e−EgrT/h̄〈ψgr|�x〉. (17)

From this we compute

�∇�yη(�y, �x)|�y=�b,�x=�a −→
T →∞

= −
�∇ψgr(�b)

ψgr(�b)
�∇�xη(�y, �x)�y=�b,�x=�a −→

T →∞
−

�∇ψgr(�a)

ψgr(�a)
. (18)

Then the general condition (15) becomes

2m̃

h̄2 [Ṽ (�b) − Ṽ (�a)] −→
T →∞

( �∇ψgr(�b)

ψgr(�b)

)2

−
( �∇ψgr(�a)

ψgr(�a)

)2

for all �a, �b. (19)

This holds if we can find m̃ and Ṽ (�x), such that

2m̃

h̄2 (Ṽ (�x) − Ṽ 0) =
( �∇ψgr(�x)

ψgr(�x)

)2

for all �x (20)

where Ṽ 0 denotes the minimum of the potential. This condition can be satisfied. This
establishes the existence of a local quantum action and finishes the proof.

2.4. Relation between classical and quantum potential

We continue to work in the limit T → ∞. Let us consider the stationary Schrödinger equation
for the ground state, which can be written in the form

�ψgr(�x)

ψgr(�x)
= 2m

h̄2 [V (�x) − Egr] (21)
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where m is the classical mass and V is the classical potential. Because the transition amplitude
is positive, also the ground state wavefunction obeys ψgr(�x) � 0 for all �x. Hence we can
define the function U(�x),

U(�x) = log ψgr(�x). (22)

Using equations (20), (21) we compute

�U(�x) = 2m̃

h̄2 [Ṽ (�x) − Ṽ 0] +
2m

h̄2 [V (�x) − Egr]. (23)

It can be cast in the form

�U(�x) + ( �∇U(�x))2 = 2m

h̄2 [V (�x) − Egr]
2m̃

h̄2 [Ṽ (�x) − Ṽ 0] = ( �∇U)2. (24)

The first equation is a generalized Riccati-type differential equation for the function U(�x).
From its solution one can obtain the quantum potential, more precisely m̃Ṽ (�x). Hence,
equations (24) constitute a transformation rule

mV (�x) → m̃Ṽ (�x). (25)

From the point of view of numerical solution, it may be advantageous to cast equation (24) in
a slightly different form. Let us define

�W(�x) = �∇U(�x). (26)

Then the generalized Riccati differential equation becomes

�∇ · �W(�x) + ( �W(�x))2 = 2m

h̄2 [V (�x) − Egr]
2m̃

h̄2 [Ṽ (�x) − Ṽ 0] = ( �W(�x))2. (27)

2.5. Relation between quantum action and potentials in supersymmetric quantum mechanics

Starting with Witten’s work [21] it was recognized that supersymmetry can be applied to
quantum mechanics. In [22] the correspondence between the 1D Fokker–Planck equation
with a bi-stable potential and supersymmetric quantum mechanics has been shown to facilitate
the calculation of a small eigenvalue that controls the rate at which equilibrium is approached.
Kumar et al [23] used the supersymmetric approach to compute the tunnelling exchange
integral t = E1 − E0 and pointed out the Riccati differential equation between the classical
and supersymmetric partner potential. Let us consider a 1D Hamiltonian system, which in the
notation of [24] and using h̄ = 2m = 1 is given by

H− = − d2

dx2
+ V−(x) (28)

where V− denotes the standard classical potential. One can construct a supersymmetric partner
potential V+(x),

V+(x) = V−(x) − 2
d

dx

ψ ′
gr

ψgr
= −V−(x) + 2

(
ψ ′

gr

ψgr

)2

. (29)

Defining a superpotential Ws(x) by

Ws(x) = −ψ ′
gr

ψgr
(30)

one obtains

V±(x) = W 2
s (x) ± dWs

dx
(31)
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Table 1. Parameters of classical action versus quantum action. v22 = 0.25, T = 4.5.

Parameter Classical action Quantum action

m 1 0.976(8)

v0 0 1.3992(4)

v2 0.5 0.5684(3)

v22 0.25 0.2469(4)

v4 0 −0.00067(7)

which is a Riccati-type equation. The following similarities are apparent. Comparing
equations (26), (30) one finds

W(x) = −Ws(x) (32)

which satisfy the corresponding Riccati differential equations (27), (31). The following
remarks are in order. In the super-symmetric approach the mass is identical to the classical
mass, while in the quantum action, the mass gets tuned, in general. In contrast to the super-
symmetric quantum Hamiltonian, the quantum action gives a parametrization of quantum
transition amplitudes (see equation (1)), which requires a tuning of the mass.

3. Model and its quantum action

In order to study full chaos the so-called K-system (2D Hamiltonian, potential V = x2y2) is
widely used. It is almost globally chaotic, having small islands of stability [25]. In order to
study mixed dynamics (entangling chaos and regular islands) it is numerically convenient to
consider the following classical system [26]:

S =
∫ T

0
dt

1

2
m(ẋ2 + ẏ2) − V (x, y) V = v2(x

2 + y2) + v22x
2y2. (33)

The parameters of the classical action are given in table 1. The ground state wavefunction
of the quantum system, obtained by solving the Schrödinger equation, is depicted in figure 1.
The quantum action (see equation (1)) takes the form

S̃ =
∫ T

0
dt

1

2
m̃(ẋ2 + ẏ2) − Ṽ (x, y). (34)

We need to determine the quantum mass (tuned mass) m̃ and the quantum potential Ṽ (x, y).
For large imaginary time T we have analytical results on the form of Ṽ . The function
m̃(Ṽ (x, y) − Ṽ min) is given by equation (20) or equivalently by the solution of equation (27).
This is depicted in figure 2. We need to determine m̃ and Ṽ separately and also the parameter
Z̃ of the quantum action. These have been computed numerically in a non-perturbative way
from a global fit to transition amplitudes in imaginary time. For this purpose we made a
polynomial ansatz for the quantum action of the following form:

Ṽ (x, y) = ṽ0 + ṽ11xy + ṽ2(x
2 + y2) + ṽ22x

2y2 + ṽ13(xy3 + x3y)

+ ṽ4(x
4 + y4) + ṽ24(x

2y4 + x4y2) + ṽ44x
4y4. (35)

We have computed transition amplitudes G(�xfi, tfi; �xin, tin) by solving the Schrödinger equation
in imaginary time keeping the transition time T fixed. The determination of unknown
parameters of the quantum action, such as Z̃, m̃, etc, requires as many equations as unknowns.
In practice we use many equations (overdetermined system), by considering a large set of
pairs of initial and final boundary points (�xj , �xi) and the corresponding transition amplitudes.
Next we make an initial guess for the unknown parameters, say Z̃(0), m̃(0), etc and solve the
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Figure 1. Ground state wavefunction ψgr(x, y).

Figure 2. Quantum potential m̃(Ṽ (x, y) − Ṽ min).

Euler–Lagrange equations of motion derived from the quantum action S̃(0), for each pair of
boundary points. Then we compute the error

ε =
N∑

i,j=1

∣∣∣∣G(�xi, T ; �xj , 0) − Z̃(0) exp

[
i

h̄
S̃(0)

[�̃x(0)

traj

]∣∣∣�xi ,T

�xj ,0

]∣∣∣∣
2

. (36)

In order to eventually find the physical values of the unknown parameters we apply a variational
principle, i.e. we search in the multi-parameter space to minimize the error globally (over all
pairs of boundary points). For more details see [15]. As a result, the terms ṽ11, ṽ13, ṽ4, ṽ24, ṽ44
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Figure 3. Typical time evolution of Lyapunov exponents. v22 = 0.25. E = 2.

(This figure is in colour only in the electronic version)

Figure 4. Poincaré section of the classical system (left) and the quantum system (right). v22 = 0.25.
E = 2.

were found to be quite small or compatible with zero. The parameters of the corresponding
quantum action for transition time T = 4.5 (large compared to dynamical time scale
Tsc = 1/Egr) and parameter v22 = 0.25 (which controls chaos) are shown in table 1. The
parentheses give the estimated error of the fit. The numerical results presented below refer
to v22 = 0.25 and v22 = 0.05. Before we present our comparison of classical chaos with
quantum chaos, we ask what behaviour do we expect? In the 1D quartic potential quantum
effects produce a strong positive quadratic term in the quantum action [15]. In the 1D double
well potential, the quantum potential becomes softened, i.e., it has a lower barrier and closer
minima. As a consequence, the instanton solutions of the quantum action are softer than the
corresponding classical instantons [16]. Are such softening effects also occurring in chaotic
phenomena?

4. Classical chaos versus quantum chaos

The notion of chaotic versus regular phase space is based on Lyapunov exponents (λ > 0
versus λ � 0). Numerically it is difficult to distinguish a small positive from a zero Lyapunov
exponent. In order to discriminate those cases we followed the time evolution for a long time.
We used Tc = 20 000 to measure λ. This is depicted in figure 3. A comparison of Poincaré
sections of the classical and the quantum system is shown in figure 4 for v22 = 0.25 and
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Figure 5. Poincaré section of the classical system (left) and the quantum system (right). v22 = 0.25.
E = 6.

E = 2. One observes a smaller number of chaotic trajectories in the quantum case than in
the classical case. In particular, this is visible near the hyperbolic fixed points (see the inset).
The same comparison for some higher energy (E = 6) is shown in figure 5. With increasing
energy the difference between classical and quantum phase space becomes more pronounced.
In order to get a quantitative measure for chaotic versus regular phase space, we have chosen
randomly a large number of initial conditions and computed the finite time Lyapunov exponent
for each such trajectory. The distribution of these Lyapunov exponents in the neighbourhood
of λ = 0 is shown in figure 6, and those for 0 < λ < 0.25 is shown in figure 7. Figure 6 shows
the distribution of Lyapunov exponents for different energies for the classical and quantum
system. While λ = 0 corresponds to regular behaviour, λ > 0 indicates chaotic behaviour.
For the purpose of numerically distinguishing the two regimes, we used this distribution to
define some cut-off λc (vertical dashed line in figure 6). Figure 6 also shows the cumulative
distribution P(λ) (full line), which is a measure of the degree of regularity. As can be seen this
curve is higher for the quantum system compared to the classical system. Moreover, figure 6
displays the coefficient R which denotes the ratio of chaotic phase space to total phase space.
The distribution of positive Lyapunov exponents is displayed in figure 7. First, one observes a
pronounced peak near zero, which has been magnified in figure 6. Second, with the increase
of energy, the system becomes more chaotic, i.e. R increases. Third, with increasing energy,
the distribution of positive Lyapunov exponents seems to approach a Gaussian shape.

Fourth, the width of the Gaussian (variance) diminishes with increasing energy. Fifth,
with increasing energy, a strong linear correlation develops between the expectation value of
λ and energy E, which can be represented by a linear fit 〈λ〉 = λ(0) + εE (fit parameters are
λ

(0)
cl = −0.040, εcl = 0.033 and λ(0)

qm = −0.026, εqm = 0.024, i.e. εqm < εcl). All these
features hold for both the classical system and the quantum system. A quantitative difference
between classical and quantum system is apparent in the degree of chaoticity R, shown in
figures 6 and 7. The corresponding results for v22 = 0.05 are given in figures 8 and 9, which
show qualitatively the same behaviour. The basic difference between the data for v22 = 0.25
and v22 = 0.05 shows up in the degree of chaoticity R which is smaller for the latter, and also in
the location of the peak in the distribution of positive Lyapunov exponents (compare figures 7
and 9), which is also smaller for the latter. This shows that the parameter v22, which controls
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Figure 6. Distribution of Lyapunov exponents near λ = 0 for different energies E. Classical
system (left column) and quantum system (right column). v22 = 0.25.
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Figure 7. Distribution of positive Lyapunov exponents. Classical system (left column) and
quantum system (right column). v22 = 0.25.
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Figure 8. Distribution of Lyapunov exponents near λ = 0 for different energies E. Classical
system (left column) and quantum system (right column). v22 = 0.05.

the degree of chaoticity in the classical system, has a counterpart in the parameter ṽ22 in the
quantum system, which plays a similar role. For all energies, and all values of v22, R plotted
in figure 10 is smaller in the quantum system than in the corresponding classical system, i.e.
the classical system turns out to be more chaotic than the quantum system. This is the main
result of this work.

How can we understand the observed behaviour? The distribution of Lyapunov exponents
approaching a Gaussian with increasing energy is well known from Hamiltonian systems with
mixed dynamics [27]. The shape of the curve and its decreasing width can be understood as
a consequence of the central limit theorem, which predicts such behaviour for an arithmetic
mean of N random variables for N → ∞. On the other hand, regular islands in an otherwise
chaotic phase space are known to give non-Gaussian tails. What can we say about those
tails? In Hamiltonian chaotic systems, with increasing energy, the phase space becomes
more chaotic, i.e. regular islands become smaller or disappear. Thus it is plausible that
the non-Gaussian tails of the distribution of positive Lyaponov exponents, associated with
the regular islands, diminish. We have estimated numerically the weight of non-Gaussian
tails using a fit of the data by a Gaussian distribution. For example, in the distribution of
classical Lyapunov exponents corresponding to v22 = 0.25 (see the left column of figure 7),
the relative error ε of such fits is as follows: E = 2, ε = 0.60, E = 4, ε = 0.39,
E = 6, ε = 0.30, E = 8, ε = 0.27, which diminishes with increasing energy. Qualitatively
similar behaviour is found in the corresponding quantum Lyapunov exponents as well as for
the data corresponding to the coupling parameter v22 = 0.05.

Second, quantum fluctuations which occur in the parameters of the quantum action can be
viewed as renormalization effects of the classical parameters [19]. The value of v2 (if sole term



Comparison of classical chaos with quantum chaos 6263

0

10

20

30

40

50

0 0.05 0.1 0.15 0.2 0.25

E=40

λ

ρ(λ)

R=88.9%

0

10

20

30

40

50

 

E=30

λ

ρ(λ)

R=73.0%

0

10

20

30

40

50

 

E=20

λ

ρ(λ)

R=48.7%

0

10

20

30

40

50

 

E=12

λ

ρ(λ)

R=10.3%

0

10

20

30

40

50

0 0.05 0.1 0.15 0.2 0.25

E=40

λ

ρ(λ)

R=86.3%

0

10

20

30

40

50

 

E=30

λ

ρ(λ)

R=69.8%

0

10

20

30

40

50

 

E=20

λ

ρ(λ)

R=41.1%

0

10

20

30

40

50

 

E=12

λ

ρ(λ)

R=7.3%

Figure 9. Distribution of positive Lyapunov exponents. Classical system (left column) and
quantum system (right column). v22 = 0.05.
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Figure 10. Volume of chaotic phase space (positive Lyapunov exponent) over total phase space
(lines are guides to the eye). Left v22 = 0.05, right v22 = 0.25.



6264 L A Caron et al

of potential would render the system integrable) is increased, while v22 (term which drives
the system away from integrability) is decreased (see table 1). Hence chaos is reduced in the
quantum system. Such increase of the quadratic term has been observed in other systems also
and seems to occur more generally.

5. Conclusion

What is the significance of our findings? In particular, what is the physical significance of
chaotic properties of trajectories for the quantum system?

(i) We found that the quantum action for large transition times allows us to construct a
quantum analogue phase space for Hamiltonian systems with mixed chaotic dynamics.
Such phase space resembles the classical phase space, in particular, when the parameter
driving chaos is small. For the mixed system considered, the quantum analogue phase
space, like classical phase space, shows islands of regular behaviour interwoven with
chaotic regions. Moreover, hyperbolic fixed points occurring in the classical phase space
survive in the quantum phase space. We compared quantitatively the classical system
with the quantum system and found that the latter is systematically less chaotic than
the former. The reason for such behaviour, in our opinion, is the tendency of quantum
fluctuations to drive the quantum action nearer to a Gaussian fixed point. Moreover,
we have investigated the quantum analogue phase space as a function of energy. We
find that such phase space, like the classical phase space, becomes more chaotic when
energy increases. Thus introducing a quantum analogue phase space gives a detailed and
quantitative measure reflecting how much chaos grows as a function of energy.

(ii) The significance of trajectories can be seen by drawing an analogy with the interpretation
of scattering experiments. In a scattering experiment, one usually measures counting
rates in detectors, which when positioned at different angles give a differential cross
section. Using theoretical input, like the S-matrix, unitarity and symmetries such as
rotational symmetry of the potential, one can obtain derived quantities, such as scattering
phase shifts δl(E). They give a picture of scattering as a function of energy and indicate
the existence of resonances in certain channels (jumps of phase shift). The partial wave
expansion in conjunction with phase shifts δl(E) gives a representation of the S-matrix and
of scattering cross sections. In analogy with this picture, we consider the quantum action
and its trajectories as a parametrization of the quantum mechanical transition amplitudes.
The quantum action and its trajectories are derived quantities. These trajectories in
conjunction with tools of nonlinear dynamics (Poincaré sections, Lyapunov exponents)
give a picture of (make ‘visible’) the chaotic dynamics in the quantum system. One
may view the Lyapunov exponents computed from trajectories of the quantum action in
analogy with scattering phase shifts computed from a partial wave analysis of scattering
cross sections.

(iii) The trajectories of the quantum analogue phase space gain a particular importance in the
interpretation of the phenomenon of chaos assisted quantum dynamical tunnelling. This
phenomenon is similar to tunnelling through a potential barrier; however, in this case
the classical transition is forbidden by a dynamical law, the presence of a KAM surface.
The experiments with ultracold atoms in an amplitude modulated optical standing wave
reported by Hensinger et al [28] and Steck et al [29] demonstrate that such dynamical
tunnelling exists and its amplitude is enhanced by chaos. The tunnelling occurs between
regions which in classical phase space correspond to regions of stable motion (fixed
points). In the quantum system this region is associated with eigenstates of the Floquet
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operator. Hensinger et al point out that ‘Floquet states do not necessarily overlap well
with the regions of regular motion of the classical Poincaré map, except in the semi-
classical limit’. Steck et al work with wave packets narrow in momentum space but not
localized in position. In order to get a picture of phase space they use a classical phase
space with a distribution with the same position and momentum marginal distribution
as the Wigner function. We suggest that in order to better understand the mechanism of
dynamical tunnelling, the role of localized states, decoherence, a higher number of Floquet
states, a quantum analogue phase space and its trajectories from the quantum action are
a complementary tool and should give additional useful insight into the dynamics of the
quantum system.
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